Sunday, March 10, 2013

New Study Validates Longevity Pathway:

Resveratrol-like compound binds to sirtuin protein. 

Credit: Image courtesy of Sinclair lab
 
A new study demonstrates what researchers consider conclusive evidence that the red wine compound resveratrol directly activates a protein that promotes health and longevity in animal models.

What's more, the researchers have uncovered the molecular mechanism for this interaction, and show that a class of more potent drugs currently in clinical trials act in a similar fashion.

Pharmaceutical compounds similar to resveratrol may potentially treat and prevent diseases related to aging in people, the authors contend.

These findings are published in the March 8 issue of Science.

For the last decade, the science of aging has increasingly focused on sirtuins, a group of genes that are believed to protect many organisms, including mammals, against diseases of aging.

Mounting evidence has demonstrated that resveratrol, a compound found in the skin of grapes as well as in peanuts and berries, increases the activity of a specific sirtuin, SIRT1, that protects the body from diseases by revving up the mitochondria, a kind of cellular battery that slowly runs down as we age.

By recharging the batteries, SIRT1 can have a profound effects on health.

Mice on resveratrol have twice the endurance and are relatively immune from effects of obesity and aging. In experiments with yeast, nematodes, bees, flies and mice, lifespan has been extended.

"In the history of pharmaceuticals, there has never been a drug that binds to a protein to make it run faster in the way that resveratrol activates SIRT1," said David Sinclair, Harvard Medical School professor of genetics and senior author on the paper. "Almost all drugs either slow or block them."

In 2006, Sinclair's group published a study showing that resveratrol could extend the lifespan of mice, and the company Sirtris Pharmaceuticals, which was started by HMS researchers, was founded to make drugs more potent than resveratrol.

But while numerous studies, from Sinclair's lab and elsewhere, underscored a direct causal link between resveratrol and SIRT1, some scientists claimed the studies were flawed.

The contention lay in the way SIRT1 was studied in vitro, using a specific chemical group attached to the targets of SIRT1 that fluoresces more brightly as SIRT1 activity increases.

This chemical group, however, is synthetic and does not exist in cells or in nature, and without it the experiments did not work.

As a response to this, a paper published in 2010 surmised that resveratrol's activation of SIRT1 was an experimental artifact, one that existed in the lab, but not in an actual animal. SIRT1 activity in mice was, the paper claimed, at best an indirect result of resveratrol, and perhaps even a sheer coincidence.

As a result, a debate erupted over the particular pathway that resveratrol and similar compounds affected. Does resveratrol directly activate SIRT1 or is the effect indirect?

"We had six years of work telling us that this was most definitely not an artifact," said Sinclair. "Still, we needed to figure out precisely how resveratrol works. The answer was extremely elegant."

Sinclair and Basil Hubbard, then a doctoral student in the lab, teamed up with a group of researchers from both the National Institutes of Health and Sirtris Pharmaceuticals to address this question.

First, the team addressed the problem of the fluorescent chemical group. Why was it required for resveratrol to rev up SIRT1 in the test tube?

Instead of dismissing the result as an artifact, the researchers surmised that the chemical might be mimicking molecules found naturally in the cell.

These turned out to be a specific class of amino acid, the building blocks of proteins. In nature, there are three amino acids that resemble the fluorescent chemical group, one of which is tryptophan, a molecule abundant in turkey and notable for inducing drowsiness.

When researchers repeated the experiment, swapping the fluorescing chemical group on the substrate with a tryptophan residue, resveratrol and similar molecules were once again able to activate SIRT1.

"We discovered a signature for activation that is in fact found in the cell and doesn't require these other synthetic groups," said Hubbard, first author of the study.

"This was a critical result, which allowed us to bridge the gap between our biochemical and physiological findings.

The above story is reprinted from materials provided by Harvard Medical School.

No comments:

Post a Comment